The {fr} package comes with an example frictionless
tabular-data-resource (tdr) named hamilton_poverty_2020
. On
disk, a tdr is composed of a folder containing a data CSV file (both
named based on the name
of the tdr) and a
tabular-data-resource.yaml
file, which contains the
metadata descriptors:
fs::dir_tree(fs::path_package("fr", "hamilton_poverty_2020"), recurse = TRUE)
#> /tmp/Rtmp6QuCYM/Rinstb80634905c2/fr/hamilton_poverty_2020
#> ├── hamilton_poverty_2020.csv
#> └── tabular-data-resource.yaml
Read the hamilton_poverty_2020
tdr into R by specifying
the location of the tabular-data-resource file or to a folder
containing a tabular-data-resource.yaml
file:
Print the returned fr_tdr
(frictionless
tabular-data-resource) object to view all of the table-specific metadata
descriptors and the underlying data:
d_fr
#> hamilton_poverty_2020
#> - version: 0.0.1
#> - title: Hamilton County Poverty Rates in 2020
#> # A tibble: 226 × 3
#> census_tract_id_2020 year fraction_poverty
#> <chr> <dbl> <dbl>
#> 1 39061021508 2020 0.057
#> 2 39061021421 2020 0.031
#> 3 39061023300 2020 0.03
#> 4 39061002000 2020 0.098
#> 5 39061002500 2020 0.442
#> 6 39061007700 2020 0.603
#> 7 39061009902 2020 0.15
#> 8 39061010700 2020 0.15
#> 9 39061023902 2020 0.013
#> 10 39061022301 2020 0.247
#> # ℹ 216 more rows
Print the schema
property to view the table-specific
metadata:
S7::prop(d_fr, "schema")
#> census_tract_id_2020
#> - type: string
#> - title: Census Tract Identifier
#> - description: refers to 2020 vintage census tracts identifiers
#> year
#> - type: integer
#> - title: Year
#> - description: The year of the 5-year ACS estimates (e.g., the 2019 ACS covers
#> 2015 - 2019)
#> fraction_poverty
#> - type: number
#> - title: Fraction of Households in Poverty
#> - description: Fraction of households with income below poverty level within
#> the past 12 months
fr_tdr
objects can be used mostly anywhere that the
underlying data frame can be used because as.data.frame
usually is used to coerce objects into data frames and works with
fr_tdr
objects:
lm(fraction_poverty ~ year, data = d_fr)
#>
#> Call:
#> lm(formula = fraction_poverty ~ year, data = d_fr)
#>
#> Coefficients:
#> (Intercept) year
#> 0.1729 NA
Accessor functions ([
, [[
, $
)
work as they do with data frames and tibbles:
In some cases, fr_tdr
objects need to be disassociated
into data and metadata before the data is manipulated and the metadata
is rejoined:
d_fr |>
dplyr::mutate(high_poverty = fraction_poverty > median(fraction_poverty))
#> Error in `vec_data()`:
#> ! `x` must be a vector, not a <fr_tdr/data.frame/S7_object> object.
In this case, explicitly convert the fr_tdr
object to a
tibble by dropping the metadata attributes using as_tibble
,
as_data_frame
, or as.data.frame
and then use
as_fr_tdr()
while specifying the original
fr_tdr
object as a template to convert back to a
fr_tdr
object:
d_fr |>
tibble::as_tibble() |>
dplyr::mutate(high_poverty = fraction_poverty > median(fraction_poverty)) |>
as_fr_tdr(.template = d_fr)
#> hamilton_poverty_2020
#> - version: 0.0.1
#> - title: Hamilton County Poverty Rates in 2020
#> # A tibble: 226 × 4
#> census_tract_id_2020 year fraction_poverty high_poverty
#> <chr> <dbl> <dbl> <lgl>
#> 1 39061021508 2020 0.057 FALSE
#> 2 39061021421 2020 0.031 FALSE
#> 3 39061023300 2020 0.03 FALSE
#> 4 39061002000 2020 0.098 FALSE
#> 5 39061002500 2020 0.442 TRUE
#> 6 39061007700 2020 0.603 TRUE
#> 7 39061009902 2020 0.15 TRUE
#> 8 39061010700 2020 0.15 TRUE
#> 9 39061023902 2020 0.013 FALSE
#> 10 39061022301 2020 0.247 TRUE
#> # ℹ 216 more rows
Shortcuts are provided for some functions from {dplyr} (see
dplyr_methods()
for a full list).
d_fr |>
fr_mutate(high_poverty = fraction_poverty > median(fraction_poverty)) |>
fr_select(-year) |>
fr_arrange(desc(fraction_poverty))
#> hamilton_poverty_2020
#> - version: 0.0.1
#> - title: Hamilton County Poverty Rates in 2020
#> # A tibble: 226 × 3
#> census_tract_id_2020 fraction_poverty high_poverty
#> <chr> <dbl> <lgl>
#> 1 39061008502 0.754 TRUE
#> 2 39061026300 0.734 TRUE
#> 3 39061026900 0.69 TRUE
#> 4 39061007700 0.603 TRUE
#> 5 39061022700 0.599 TRUE
#> 6 39061003000 0.592 TRUE
#> 7 39061002901 0.576 TRUE
#> 8 39061006600 0.561 TRUE
#> 9 39061008000 0.556 TRUE
#> 10 39061009300 0.54 TRUE
#> # ℹ 216 more rows
More complicated dplyr functions (e.g., group_by()
and
friends) as well as functions from other packages that do not coerce
their inputs to data.frame objects will need to use the pattern above.
Below is a simple example for dplyr::left_join()
:
library(dplyr, warn.conflicts = FALSE)
d_fr <- update_field(d_fr, "fraction_poverty", description = "the poverty fraction")
d_extant <-
d_fr |>
fr_mutate(score = 1 + fraction_poverty) |>
fr_select(-fraction_poverty, -year) |>
as_tibble()
d_fr_new <-
left_join(
as_tibble(d_fr),
d_extant,
by = join_by(census_tract_id_2020 == census_tract_id_2020)
) |>
as_fr_tdr(.template = d_fr) |>
update_field("score", description = "the score")
d_fr_new
#> hamilton_poverty_2020
#> - version: 0.0.1
#> - title: Hamilton County Poverty Rates in 2020
#> # A tibble: 226 × 4
#> census_tract_id_2020 year fraction_poverty score
#> <chr> <dbl> <dbl> <dbl>
#> 1 39061021508 2020 0.057 1.06
#> 2 39061021421 2020 0.031 1.03
#> 3 39061023300 2020 0.03 1.03
#> 4 39061002000 2020 0.098 1.10
#> 5 39061002500 2020 0.442 1.44
#> 6 39061007700 2020 0.603 1.60
#> 7 39061009902 2020 0.15 1.15
#> 8 39061010700 2020 0.15 1.15
#> 9 39061023902 2020 0.013 1.01
#> 10 39061022301 2020 0.247 1.25
#> # ℹ 216 more rows
S7::prop(d_fr_new, "schema")
#> census_tract_id_2020
#> - type: string
#> - title: Census Tract Identifier
#> - description: refers to 2020 vintage census tracts identifiers
#> year
#> - type: integer
#> - title: Year
#> - description: The year of the 5-year ACS estimates (e.g., the 2019 ACS covers
#> 2015 - 2019)
#> fraction_poverty
#> - type: number
#> - title: Fraction of Households in Poverty
#> - description: the poverty fraction
#> score
#> - type: number
#> - description: the score